NJ-1357

B.Sc. (Part-III) Examination,

Mar.-Apr., 2023
MATHEMATICS
Paper - III (B)
(Discrete Mathematics)
Time Allowed : Three Hours
Maximum Marks : 50
Minimum Pass Marks : 17

नोट : प्रत्येक प्रश्न से किन्हीं दो भागों के उत्तर दीजिये। सभी प्रश्नों के अंक समान हैं।

Note : Answer any two parts from each question. All questions carry equal marks.

UNIT-I / इकाई-I

Q. 1. (a) Find the integer solutions of the equation:

$$
x_{1}+x_{2}+x_{3}+x_{4}=13,0 \leq x_{i} \leq 5, i=0 \text { to } 5
$$

समीकरण $x_{1}+x_{2}+x_{3}+x_{4}=13,0 \leq x_{1} \leq 5$, $i=0$ to 5 का पूर्णांक हल ज्ञात कीजिये।
(b) Construct a grammer for the language :
$L=\left\{a^{m} b^{n}: m \neq n, m>n>0\right\}$
निम्न भाषा के लिए व्याकरण की रचना कीजिये :
$L=\left\{a^{m} b^{n}: m \neq n, m>n>0\right\}$
(c) A has 3 shares in a lottery containing 3 prizes and 6 blanks, B has one share in a lottery containing one prize and 2 blanks.

Compare their chances of success.
A के पास एक लाटरी में 3 शेयर हैं जिसमें 3 पुरस्कार और 6 रित्त है; B की लाटरी में एक हिस्सा है जिसमें 1 पुरस्कार और 2 रित्त है। उनकी सफलता की संभावनाओं की तुलना करें।

UNIT-II / हकाई-II

Q. 2. (a) Show that dual of a lattice is a lattice.

दिखाइये कि एक जालक का द्वैत जालक होता है।
(b) Let G be a simple graph with n vertices. If G has k components, then the maximum number of edges that G can have are $\frac{(n-k)(n-k+1)}{2}$.

माना G एक सरल ग्राफ है जिसमें n शीर्ष है। यदि G में k घटक है तो G के भुजाओं की अधिकतम संख्या हो सकती है :
$\frac{(n-k)(n-k+1)}{2}$
(c) Find the shortest path between A and Z in the following weighted graph using Dijkstra's Algorithm

डिजेक्स्ट्रा एल्गोरिथ्म का उपयोग करके निम्न भार ग्राफ की A से Z तक की लघुत्तम दूरी ज्ञात कीजिये।

UNIT-III / इकाई-III
Q. 3. (a) Using generating functions, evaluate the sum :
3.2.1 + 4.3.2 + 5.4.3 + \qquad $+(r+1) \cdot r$.

जनक फलन का उपयोग करके हल कीजिये :
$3.2 .1+4.3 .2+5.4 .3$ $+(r+1) \cdot r$
$(r-1)$
(b) Construct a finite state machine M that recognizes the set of strings of 0 s and 1 s each of which starts with a 1 and ends with 010.

एक परिमित अवस्था मशीन M का निर्माण करें जो $0 s$ और 1 s के शब्दों के सेट को पहचानता है जिनमें से प्रत्येक 1 से शुरू होता है और 010 पर समाप्त होता है।
(c) State and prove pumping lemma.

पंपिंग लेम्मा को लिखिए और सिद्ध कीजिये।

UNIT-IV / इकाई-IV

Q. 4. (a) Find the particular solution of the following difference equation :
$a_{r}-5 a_{r-1}+6 a_{r-2}=2^{r}+r$
निम्नलिखित अंतर समीकरण का विशेष हल ज्ञात कीजिए :
$a_{r}-5 a_{r-1}+6 a_{r-2}=2^{r}+r$
(b) Show that the set of cube roots of unity is an abelian group with respect to multiplication. दिखाएँ कि इकाई के घनमूलों का समुच्चय गुणन के सापेक्ष एक आबेली समूह है।
(c) Solve by the method of generating function the recurrence relation:
$a_{r}-5 a_{r-1}+6 a_{r-2}=2, r \geq 2$
with the b.c. $a_{0}=1$ and $a_{1}=2$

जनक फलन विधि से हल करें :
$a_{r}-5 a_{r-1}+6 a_{r-2}=2, r \geq 2$
b.c. $a_{0}=1$ तथा $a_{1}=2$

UNIT-V / इकाई-V
Q. 5. (a) Prove that a lattice (L, \leq) is distributive iff :
$(a \vee b) \wedge(b \vee c) \wedge(c \vee a)=(a \wedge b) \vee(b \wedge c) \vee$
$(c \wedge a) \forall a, b, c \in L$
सिद्ध कीजिए कि एक जालक (L, \leq) वितरणात्मक होती है यदि और केवल यदि:
$(a \vee b) \wedge(b \vee c) \wedge(c \vee a)=(a \wedge b) \vee(b \wedge c) \vee$
$(c \wedge a) \forall a, b, c \in L$
(b) Design a 4-terminal circuit which gives real form to the following three functions :
$f=a(b+c d)(x+y), g=a(b c+c d)$,
$h=a\left(b c^{\prime}+b^{\prime} c d\right)$
P.T.O.
(8)

एक 4 -टर्मिनल सर्किट डिजाइन करें जो निम्नलिखित तीन कार्यों को वास्तविक रूप देता है :

$$
\begin{aligned}
& f=a(b+c d)(x+y), g=a(b c+c d) \\
& h=a\left(b c^{\prime}+b^{\prime} c d\right)
\end{aligned}
$$

(c) Replace the boolean function: $r \cdot t+\left[s \cdot\left(s^{\prime}+t\right) \cdot\left\{r^{\prime}+(s \cdot t)\right\}\right]$ by simple one by creating switching circuit.

स्विचिंग सर्किट का निर्माण करते हुये बूलीय फलन $\mathrm{r} \cdot \mathrm{t}+\left[\mathrm{s} \cdot\left(\mathrm{s}^{\prime}+\mathrm{t}\right) \cdot\left\{\mathrm{r}^{\prime}+(\mathrm{s} \cdot \mathrm{t})\right\}\right]$ को सरलीकृत में बदलें।

